

Math 451: Functional Analysis**HOMEWORK 1****Due: Jan ??, 23:59**

- Let (X, \mathcal{B}) be a measurable space, and let $M(X, \mathcal{B})$ be the space of finite complex measures on (X, \mathcal{B}) . Then $\|\mu\| = |\mu|(X)$ is a norm on $M(X)$ that makes $M(X)$ into a Banach space.
HINT: Use the absolutely convergent series criterion for completeness.
- Let $C^k([0, 1])$ be the space of functions on $[0, 1]$ possessing continuous derivatives up to order k on $[0, 1]$, including one-sided derivatives at the endpoints. Prove that

$$\|f\| = \sum_{j=0}^k \|f^{(j)}\|_u$$

is a norm on $C^k([0, 1])$ that makes $C^k([0, 1])$ into a Banach space.

HINT: The main point is to show that if $\{f_n\} \subset C^1([0, 1])$ with $f_n \rightarrow f$ and $f'_n \rightarrow g$ uniformly, then $f' = g$. Use the fundamental theorem of calculus.

- Let $L_k^1([0, 1])$ be the space of all $f \in C^{k-1}([0, 1])$ such that $f^{(k-1)}$ is absolutely continuous on $[0, 1]$ (and hence $f^{(k)}$ exists a.e. and is in $L^1([0, 1])$). Then

$$\|f\| = \sum_{j=0}^k \int_0^1 |f^{(j)}(x)| dx$$

is a norm on $L_k^1([0, 1])$ that makes $L_k^1([0, 1])$ into a Banach space.

HINT: Fundamental theorem of calculus. Consult Lecture 25 of [Math 564, Fall 2025](#).

- This exercise demonstrates two opposite situations of the relationships of the L^p spaces: large scale (at infinity) and small scale. Let $0 < p \leq q \leq \infty$. Prove:
 - For any set X , we have $\ell^p(X) \subseteq \ell^q(X)$; in fact, $\|f\|_q \leq \|f\|_p$ for all $f : X \rightarrow \mathbb{C}$.
 - For any finite measure space (X, μ) , we have $L^q(\mu) \subseteq L^p(\mu)$; in fact, $\|f\|_p \leq \|f\|_q \cdot \mu(X)^{\frac{1}{p} - \frac{1}{q}}$.
In particular, when (X, μ) is a probability space, we have $\|f\|_p \leq \|f\|_q$.

MORE QUESTIONS TO BE ADDED.